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Abstract. Biological experiments identify large lists of genes and biol-
ogists find functional relationships between them to get a better under-
standing of data. Gene Ontology (GO) is a database of terms related
to genes and gene products that has the potential to assist in visual-
izing and finding functional relationships between genes. We augment
genes with GO terms and compare visualizations using two term–to–
term similarity measures for terms associated with genes: a hop-based
distance measure and an information-content-based similarity measure
(IC). Visualization is with Singular Value Decomposition. Relationships
are further explained using Pearson correlation with GO terms. Results
show that both methods find the relationships between genes however,
difference is observed in visualization of GO terms, where IC method
shows tightly-packed clusters in contrast to the loose and scattered clus-
ters found with hop based method.

1 Introduction

The widespread use of microarray-based high–throughput technology has pro-
duced masses of gene expression data. Interpretation of these large datasets poses
a substantial challenge to biologists. Furthermore, gene names do not provide
functional information about genes which makes it harder to make sense of gene
lists. Consequently researchers enhance data with ontologies such as the Gene
Ontology [1] to add functional information to genes which eventually leads to
better understanding of large lists of genes.

The Gene Ontology project includes a database of terms related to genes and
gene products in several organisms. A gene is associated with zero or more terms
that are divided into three subontologies: molecular function, biological process
and cellular component which represent biochemical activity, biological objective
and the physical location of the gene products respectively. Each term has a
unique identifier (GO:#######), name and type. Gene Ontology terms are
represented in a hierarchical structure where relationship between terms is either
“is–a” or “part–of” representing class–subclass and containment respectively.
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Previous use of GO in visualization of genes is widespread. We review liter-
ature in two main domains: (i) functional–based clustering and visualization of
genes using GO and (ii) different similarity measures used for clustering genes
with GO. Richards et al. [14] developed a framework to find the functional co-
herence between genes by constructing a graph-based matrix using GO while
Huang et al. [8] evaluated different tools available for functional analysis of gene
lists. They divided them into three categories: singular enrichment analysis, gene
set enrichment analysis and modular enrichment analysis.

Different similarity measures have been used by researchers using GO such
as Lee et al. [11] who exploit the GO hierarchical structure and use directed
acyclic graph similarity measures to find clusters of genes. On the other hand,
Fröhlich et al. [5] used an information-content-based similarity measure to look
for common shared parents terms between GO terms, took the probability of
each shared parent term in the dataset and applied k-means clustering to identify
gene clusters. In Ghous et al. [6] we used a hop-based similarity measure and
kernel principal component analysis to find similarities between genes.

In this study we apply singular value decomposition to lists of genes aug-
mented with GO terms using two term-to-term similarity measures: information-
content-based similarity measure (IC) and hop-based similarity measure and
compare the results with respect to their biological interpretation. Further com-
parison is done with the trustworthiness measure [15] by comparing the faith-
fulness of the different low dimensional representations to the high dimensional
representation. This approach is applied on two datasets: a simulated list of
genes from Kyoto Encyclopedia of Genes and Genomes (KEGG) [10] to vali-
date the approach and a dataset derived from biological experiments in childhood
leukemia.Gene Ontology database was downloaded on 17-01-2010. The rest of
this paper is organized as follows. Section 2 describes two methods of incorporat-
ing GO information into gene lists and our approach to visualization. Section 3
describes our datasets. Section 4 presents results and analysis followed by the
conclusion in section 5.

2 Methods

We create two matrices X and P with X showing relationships between genes
and terms and P describing the similarity between terms. Let G be a set of genes
and T a set of GO terms related to any of the genes in G. The X matrix is a
binary matrix with dimensions g × t where g is the number of genes (|G|) and
t is the number of GO terms (|T |). If a term relates to a gene the value of xij

is 1 otherwise 0. The element pij in matrix P ∈ Rt×t represents the similarity
between terms i and j. The augmented data matrix X′ is defined as

X′ = XP (1)

2.1 Generating the proximity matrix

Two proximity measures between terms are explored in this paper: a hop-based
similarity measure and an information-content-based similarity measure.
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Hop-based proximity is based on counting the shortest number of hops be-
tween two GO terms over the ontology using only ‘is-a’ links, which are far more
frequent than ’part-of’ links. Proximity pij between terms i and j is defined
using dij , the link distance between terms i and j, as

pij =
1

dij + 1
(2)

Information-content-based proximity [5], on the other hand, uses information
content theory [13] to calculate the semantic similarity between GO terms. It is
based on the probability of GO terms in the gene dataset X. The information
content measure is defined as

IC(t) = − log2 P (t) (3)

where P (t) is the probability of term t in the data matrix and is calculated as
P (t) = freq(t)/N where N is the total number of GO terms in X and freq(t) is
the number of occurrences of t or any of its the child terms. Similarity between
terms i and j is defined as

pij = − log2 min
t̂∈Qa(i,j)

P (t̂) = − log2 Pms(i, j) (4)

where Qa(i, j) is a function returning the set of common shared parent terms
between terms i and j and Pms, the probability of the minimum subsumer [12],
is the minimum P (t̂) if there is more than one parent.

2.2 Singular Value Decomposition

Singular value decomposition (SVD) [7] is a method that factors a data matrix
A ∈ Rn×m into matrices U ∈ Rn×r, V ∈ Rm×r and the diagonal D ∈ Rr×r

A = UDVT (5)

where r ≤ m is the rank of A, n is the number of data points and m the
number of terms for all genes. We visualize the data using the first k rows of
U and V which are associated with genes and terms respectively. SVD is used
to transform data matrix X′ after scaling and centering. Visualization quality is
measured using trustworthiness [15]. Trustworthy visualizations are those where
neighboring points are the same in both the input and low dimensional spaces.
Due to space limitation we are unable to describe trustworthiness in detail.

3 Datasets

Two datasets are used in this study: a “simulated” set of genes selected from
known classes used for validation (the “KEGG dataset”) and a dataset of “real”
genes from the childhood leukemia domain (the “cancer dataset”).
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The KEGG dataset uses genes with known functionality selected from the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database [10], a database
providing functional classification of genes independent of Gene Ontology. We
identified genes based on KEGG Orthology terms from five classes: ribosome
(ko03010, class 1, 20 genes), RNA polymerase (ko03020, class 2, 19 genes), tran-
scription (ko01210, class 3, 11 genes), pentose phosphate pathway (ko00030, class
4, 11 genes) and pentose and glucoronate interconversions (ko00040, class 5, 7
genes) with 68 genes in total. Classes 1, 2 and 3 are related to genetic processing
while classes 4 and 5 are related to the carbohydrate metabolic process.

The cancer dataset relates to genes identified as important in Acute Lym-
phoblastic Leukemia (ALL). It was constructed based on results from Flotho et
al. [4] and Catchpoole et al. [3]. Flotho and colleagues identified a fourteen gene
signature with expression values able to separate a cohort of ALL patients into
two groups that agreed with minimal residual disease (MRD) results. Catchpoole
and colleagues [3] examined these genes on a different cohort of ALL patients
and also discovered a separation of patients but it did not agree with MRD re-
sults nor with clinical presentation. Random forest [2] was used to identify other
genes that supported the same separation of patients as achieved by Flotho’s
gene signature. A random forest run of 50,000 trees was performed on a gene ex-
pression dataset generated using Affymetrix Human Genome U133-based chips
on diagnostic bone marrow samples from ALL patients. The dataset consists
of 127 patients and 22,280 probesets. The 250 probesets with the largest mean
decrease in Gini index were selected for the “cancer dataset”.

4 Results

4.1 Visualizing KEGG dataset

Results show that principal component 1 (PC1) with both similarity measures
is related to the number of GO terms for genes (Fig. 1(a) and Fig. 1(b)) which
Jolliffe [9] describes as a “size” component. The high Pearson correlation (0.99)
between points projected to PC1 and the number of GO terms associated to
genes also confirms this. It is reasonable that the largest amount of variation in
dataset is based on the number of the GO terms. Later PCs identify functional
relationships between genes. For the hop-based measure, PC2 contrasts genes
showing the separation between the genetic information processing genes and
the carbohydrate metabolism genes (Fig. 2(a)) while PC2 with the information
content (IC) measure separates terms based on the GO subontology (as shown in
Fig. 1(b)). The IC method separates genetic information processing and carbo-
hydrate metabolism genes at PC5 (Fig. 2(b)) demonstrating that both methods
find the expected functional relationship between genes. Trustworthiness does
not show significant differences between the measures (see Fig. 6, top).

4.2 Visualizing cancer dataset

As with the KEGG dataset, the hop-based and IC approaches both show a
strong correlation between the number of GO terms and projected points to
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Fig. 1. Plot for PC1 and PC2 for both methods using KEGG dataset. (a) Hop-based
method. Legend: ◦ is gene, • is term. (b) IC similarity measure. Legend: • is gene,
◦ is molecular function GO term, + is biological process GO term and � is cellular
component term.
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Fig. 2. (a) Principal component(PC) 2 and 3 for hop-based method and (b) PC4 and
5 for IC method. Legend: (◦) is genetic information processing genes and (+) represent
carbohydrate metabolism genes.
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PC1. Overall, the distributions of GO terms make three clusters, associated with
each GO subontology. To untangle the relationships across the subontologies,
we applied SVD to the terms from each subontology separately. We examined
clusters through correlation and by listing the terms in each cluster.

For the Cellular Component GO terms, the hop-based approach revealed
a separation between cytoplasmic structure terms and DNA replication terms
along PC3 axis as shown in Fig. 3(a). It also highlighted a cluster of terms
associated with the membrane on the negative end of PC2 and a cluster of
tubulin and kinesin GO terms towards the positive end of PC3 (see Fig. 3(a)
clusters A and B respectively). PC2 in the IC approach reveals four small distinct
clusters: a cluster of membrane and extracellular-matrix-related terms, a cluster
of terms associated to organelles, protein-complex-related terms and a cluster of
cell-division-apparatus-related terms as shown in Fig. 3(b) as clusters A, B, C
and D respectively. Some of the terms in these clusters are listed in Table 1.

For the Biological Process GO terms PC3 in the hop-based approach reveals
a cluster of terms associated with development (e.g. embryonic development,
notochord development, forebrain development, embryonic axis specification) as
shown in Fig. 4(a). PC2 in the IC approach identifies five tight clusters (shown in
Fig. 4(b)): cluster A relates to morphogenesis and early development, cluster B
to homeostasis and response to stimulus (within which is a subgroup related to
molecular transport in the cell), cluster C relates to gene expression regulation
and metabolism, cluster D to differentiation and cluster E to DNA metabolism
and function along with a number of small subgroups e.g vesicle transport. As
before, some of the terms found in these clusters are listed in Table 1.

BA
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D
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Fig. 3. Plot of principal components 2 and 3 of cancer dataset with cellular component
(CC) terms. (a) Hop-based similarity measure. Legend: (•) is genes and (�) is CC
terms.(b) IC similarity measure. Legend: (•) is genes and (+) is CC terms.
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Fig. 4. plot of principal components 2 and 3 of cancer dataset with biological pro-
cess(BP) terms. (a) Hop based similarity measure. Legend: (•) is genes and (�) is BP
terms (b) IC similarity measure. Legend: (•) is genes and (◦) is BP terms.

For the Molecular Function terms, PC2 in the hop-based approach identifies
a cluster of terms associated with DNA helicase activity. In close proximity to
this cluster is a loosely packed cluster of six genes that code for mini chromosome
maintenance proteins (MCM2, MCM3, MCM4, MCM5, MCM6 and MCM7) as
shown in Fig. 5(a). Both MCM proteins and replicative helicase play integral
roles in eukaryotic DNA replication. The IC approach also identified this loose
cluster of MCM genes and the GO term for DNA helicase activity. Across PC2,
the rest of the clusters relate to enzyme activity No. 1, enzyme activity No. 2
and non-enzymatic molecular interactions as shown in Fig.5(b) as A, B and C
respectively. Some terms from these clusters are in Table 1. Again, trustworthi-
ness does not show significant differences between either similarity measure on
the cancer dataset (see Fig. 6, bottom).

5 Conclusion

This study compares singular value decomposition visualizations of genes and
Gene Ontology terms using two inter–term similarity measures: a hop-based
measure and an information-content-based measure. Two datasets were investi-
gated: a list of selected genes with known functionality from the KEGG database
and a dataset of “real” genes from the childhood leukemia domain. Results show
that the first PC for both methods visualize genes based on the number of terms
associated with them but that later PCs visualize genes by their functional-
ity. The information-content-based method also clustered GO terms based on
the subontology from which they arose. Both methods identified clusters of GO



8 Comparing Functional Visualizations of Genes

A

(a)

A

B

C

(b)

Fig. 5. Plot of principal components 2 and 3 of cancer dataset with molecular function
terms. Legend: (•) is genes and (�) is molecular function terms. (a) Hop based similarity
measure (b) IC similarity measure.

terms related to functionality but the IC method resulted in more tightly–packed
clusters of terms and genes than the hop–based method. Trustworthiness showed
negligible difference in the quality of projections based on nearest neighbors in
the high and low dimensional spaces. We recognise that the PCs are challenging
for biologists to understand and plan to address this in future work. Biologists
will also be involved in validation using biological experiments. In future we also
plan to apply clustering methods to better describe the resulting visualizations.
We plan also to explore other term–to–term similarity measures such as set–
based and vector–based approaches. Finally, we will compare the results of our
method with other commonly used gene set enrichment tools.

Acknowledgments. This study was supported by a UTS Challenge Grant and
a NSW Cancer Institute Research Innovation Grant.

References

1. Ashburner, M., Ball, C.A., A.Blake, J., et al.: Gene ontology: tool for the unification
of biology. The Gene Ontology Consortium. Nat Genet 25(1), 25–29 (2000)

2. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)
3. Catchpoole, D., Guo, D., Jiang, H., Biesheuvel, C.: Predicting outcome in child-

hood acute lymphoblastic leukemia using gene expression profiling: Prognostication
or protocol selection? Blood 111(4), 2486–2487 (2008)

4. Flotho, C., Coustan-Smith, E., Pei, D., et al.: A set of genes that regulate cell pro-
liferation predicts treatment outcome in childhood acute lymphoblastic leukemia.
Blood 110(4), 1271–1277 (2007)



Comparing Functional Visualizations of Genes 9
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Clusters Example Terms Description

CC Terms
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Cluster of membrane
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Organelles
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Protein complexes
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(Stem Cells)
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DNA metabolism
and function with
a number of small
subgroups e.g. vesicle
transport

MF Terms

A GO:0003678/DNA helicase activity,
GO:0004003/ATP-dependent DNA helicase ac-
tivity and GO:0008026/ATP-dependent helicase
activity

Enzyme activity
No.1

B GO:0003777/microtubule motor activ-
ity, GO:0003774/motor activity and
GO:0003924/GTPase activity

Enzyme activity
No.2

C GO:0016853/isomerase activity, GO:0003689/DNA
clamp loader activity and GO:0003916/DNA topoi-
somerase activity

Molecular interac-
tions non-enzymatic
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Fig. 6. (a)Trustworthiness plot of KEGG dataset and (b) is trustworthiness plot of
cancer dataset. (•) line is for hop based method and (×) line represent IC method
where N is the number of neighbors.
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